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The problem of the diffraction of a plane unsteady acoustic wave by an infinite circular cone
of arbitrary vertex angle was considered in [1 and 2] where numerical and asymptotic methods
were used. In the present paper an analytic solution is obtained in the axisymmetrical case
through the use of integral tranforms. The solution is further studied in the case of a step-
function pressure wave, and the results of numerical computations are given.

1. Suppose an acoustic pressure wave
ug = (cot —- r cos 0)” n (cgt — rcos 0)

} is incident on a cone (Fig. 1) of arbitrary angle 26
~ Here 7(x) is the Heaviside function, ¢, is the velocity of
sound in the medium, r and @ are sphencal coordinates of
a point; and Re v > — 1. The axis of the cone is perpen-
I dicular to the incident wave front, which touches the ver-
tex of the cone at the instant ¢t = 0. With no loss of gen-
erality we may set ¢y = 1 and seek a solution in the form
u=w+ u,. Then the equation of the perturbed motion of
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X the medium and the boundary and initial conditions assume
Fig, 1 the form
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(In the case when the derivative of u, does not exist in the ordinary sense, it is to be
understood as a generalized derivative.) It is assumed that the function w(r, A, t) satisfies
the conditions under which a l.aplace tranform in ¢ is applicable, and that its tranform ad-
mits a Kontorovich«l.ebedev tranform in r [3].

2. To the system (1.1) we first apply a Laplace transform in ¢, and then a Kontorovich-
Lebedev tranform in r. Then the equation and boundary condition become
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Here I (x) is the Gamma function; P, *(a) are the associated Legendre functions of the
first kind for the interval (- 1, 1) [4]; and K ,(x) is the MacDonald function.

The solution of (2.1) which has no singu{:rity in the region A< 0 < r and satisfies boun-
dary condition (2,2) may be written in the following form:

AT (1) P, Y (cos0y) Py (— cos®)

= — 2.3
v V2 p7* cos TP, b (—cos ) .3
Applying an inverse Kontorovich-Lebedev transform in g, we obtain
fco
SR04 P, 1 {cosfic) P, i {~ cosB)
Vatt+y = o I, (pr)pdp (2.4)

= Varp i o €08 ap P,y (— coshy)

Here I, (x) is the modified Bessel function of the first kind.

The integral on the right<hand side of (2.4) converges and represents an analytie func-
tion in the region Iarg pl <Y — (26 - B). But the function ®, as Laplace transform of
the desired solution, should be analytic in the region Re p > a,. We use an analytic contin«
uation of the right-hand side of (2.4) to define $ as an analytic function in the entire region
Re p > a, for any @ in the interval § < H <7.

Since
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the integrand in (2.4) decays rapidly in the right haif~plane and the contour of integration

may be deformed to the contour L (Fig. 2). This is because the integrand in (2.4) is analy-
tic in the half-plane Re p > 0 everywhere

N Mm L outside the real axis, As is evident from
e N Fig. 2, the contour L proceeds to infin-
Fig. 2 ity along the real axis, circumventing
* each simple pole of the integrand. It is
now easy to see that the integral in (2.4) {but now taken along L) converges and represents
an analytic function in the half-plane Re p > 0; thus by the uniqueness theorem it represent:

the function { in the region Rep>a .
If we now apply an inverse Laplace transformation to (2.4) and interchange the order of

integration (which interchange may be justified by a detailed argument), we obtain
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The integral with respect to p in {2.5) is calculated in Section 4.

3. If one uses Fomula (4.2) (see Section 4), then expression {2.5) ferw{r, 8, t) may
written in the following form:
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art J cos apP, b (— cos Oo)

L4 e r'l)'~’=(“"’S cos [(p —v)aj P}, (cos 6")_’:1*_31’{(_005 0)QLL (e / r)pd

-Are cos apPL_,, (— cos0o)

(t>r) (3.1)
Here Q,,%x) are the associated Legendre functions of the second kind.
On the basis of the asymptotic properties of these associated Legendre functions as
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lge| 00, it in easy to see that for 20, — 6 < arc cos (t/r), the integrand in (3.1) for —r < ¢ <
< r decays exponentially along any ray in the y-plane outside the real axis; and therefore t
the contour L may be deformed into the imaginary axis. Then, since P ‘b““(x) =P F‘_" -4, ()
the resalting integral vanishes. Thus we shall have everywhere w = 0 for ¢ < 0, and also
for 0<¢<r, 1f 26, — 6 < arc cos (¢/r); one obtains the physical flow picture in Fig. 1:
outside the bounded region BCKDN there is no disturbance.

H one uses the theorem on residues and reduces the integral in (3.1) to a series corres-
ponding to the roots of the expression cos ry P "% (— cos f), then the series according
to roots of the function cos 7y yields an incident wave with opposite sign (this is easily
obtained by applying the inverse Laplace transform to the formula of Sonin (5) on Page 75
of [5] and expressing the Gegenbauer polynomial by means of the associated Legendre func-
tions of the first kind according to Formula (4) on page 177 of [4]). In this way the solution
u may be written in the following form:
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sin tp dP,t (— cos 8o) / dp
Here K, (m=0,1, 2 ... are positive roots of the function P 1(— cos @ ) (in which 1 <
<y <ty <eos)s It should be noted that the series obtained in (3.2) for ¢t <r and — 1 < Re

v £ 0 is conditionally convergent.
For the surface § = 90. Formula (3.2) yields
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As r -+ 0 we obtain from (3.2) "
v )

#0900 =072 B~ (3.4)

The value of u (0, @, ¢) thus obtained agrees with the results of (6) (where the value at
the vertex of the cone is found without solving the entire problem).

It is easy to verify that the solution (3.2) obtained is such that Laplace and Kontorovich-
Lebedev transforms may be applied successively to it, as was assumed initially, and that
ft is a generalized solution of the wave equation. From estimate (3.4) it follows that the ob-
tained solution (3.2) is unique [2].

Suppose the incident wave has the shape of a step function (v = 0). The corresponding
formulas for this case are obtained from (3.1) to (3.4), when p -» 0. Studying the solution ob-
tained, it may be shown that the function u undergoes a discontinuity only along the lines

BC and DN and that the magnitude of the jump is equal to
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: — s
(S2@0-9)" g <o<0

On the circle r = ¢ the normal derivative Ju/dr is discontinuous. This discontinuity is
such that as the arcs AC and DE are approached from either the left or the right, the func-
tion Ju/dr becomes logarithmically singular, whereas this function has a finite limit when
the arc DKC is approached.

If 0 =+ 17 /2, then it is easy to show that the solation obtained for v = 0 tends to the solu-
tion for the case of a blunt cone [1]. If the angle 0 is small, then a result is obtained which
may be found by solving the problem by means of de]nyed potentials,

Formula (3.3) for the pressure on the cone at v = 0 has the following form:

tqx Viss < @+1)P(—2)
u(r, 8, ) =057 (0,/2) sinbe :?i dP T (-~ cos 00) / dn =<1) @5

L2VFET 5 Ge0Q @sin
u(r, 0, 1) =icom (60/2) sin Ao 2" dP,T(— cos )/ dp (z>1) (==t/7)

“(’,Bu.t)ﬂm as r—0

P S S N (2 + 1) sin
u(r,8,1) cos? (B, / 2) nsineopi-i i (i 1) dP T (— cosBo) /dp
n

.gr—Pl

u(r, 0o, ) >2 asr—>t/cosf,

Finally, Fig. 3 shows the results of caluclatmg the function u (r, 8, t) according to
Formula (3.5), for the angles _ = 15, 45, and 75° The roots of the function P 1( - cosG )
for §, = 15° were taken from [ ‘} and for 6, = 45° and 75° were calculated by M‘:cDonald'
formnla [8].

2.0rg [ 7 | /// We note that in the case of incidence of an ar
' 4 T ' 1°  bitrary plane wave, the solution is generalized with
=T - - —/TNT ; the help of Duhamel’s integral.
- t‘ P "SL2Z =t 4. It is required to find the inverse Laplace
i L1 ] j:7{Z_J transform of the function l“(pr)/p , i.e., to calcu-
IUQ--~ | &=l ’ — ' late the integral
o a2 a4 06 08 10 af-ico
reose, L Ve )
¢ S \ —— " ap (4.1)
Fig. 3 a—ic

for an arbitrary complex y and ¢ > 0, > 0, Imt = 0,
Re v > ~ Y. The desired integral (4.1) is easily reduced to a sum of two integrals

o o«
1 . [=n sin zt
o[ G v—m] ) T,

0

if one imposes on y the additional limitation — 1 < Re (1 — v/). But each of these integrals,
according to Formula 6.699 in [9], may be expressed in terms of a hypergeometric function,
and therefore the integral (4,1) is a sum of hypergeometric functions, It turns out that this
sum may be expressed by means of associated Legendre functions by Formulas 8.771(2) and
8.775(1) in [9], if one takes into account the error in the index of the hypergeometric func-
tion in the second term of the summation in Formula 8.775(1) for Pv“(x), which should read

FMeg(v+p+2,Y,—v+1) Y 22
As a result we obtain Formulas
1 oy (pr) 1
—_— Lod 14 —_ Y (v=*12) pY —
zmaé‘m > e? dp—V-z_E; (r*— ) ( Pmy (—t/r) (—r<t<Lr)

» xt
[—%— (v-—- |.t)] it J(aryde
0
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1 “F°1, or) vz
P S b ePtip= Ve sin [(r — v) 5] e™HHD (13 pryat- i) Q;i’:;}: Afry >

a—fo -
{We note that for ¢ < — r the integral (4.1) vanishes.) (4.2)

By analytic continuation one may show that (4.2) holds in the entire complex g -plane
provided that Re v > — %,

1o particular case g —pv=n (n =0, 1, 2, ...), Formula {4.2) coincides with known formu-
las which may be obtained from 29,10 and 29.71 in [10] with the aid of the shift rule {if one
considers the lost factor )4 in the right column of Formula 29.71).

The author thanks A.Ya. Sagomonian and S.S. Grigorian for reviewing the paper, and
V.A. Ereshin for help with it.
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