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The problem of the diffraction of a plane unsteady acoustic wave by an infinite circular cone 

of arbitrary vertex angle was considered in [1 and 21 w ere numerical and asymptotic methods h 

were used. In the present paper an analytic solution is obtained in the axisymmetrical case 

through the use of integral tranfonns. The solution is further studied in the case of a step- 

function pressure wave, and the results of numerical computations are given. 

1. Suppose an acoustic pressure wave 

no L (C,l -- r cos 0)” 11 (cot -- r cos 0) 

is incident on a cone (Fig. 1) of arbitrary angle 28,. 

Here q(x) is the Heaviside function, co is the velocity of 
sound in the medium, r and 8 are spherical coordinates of 

a point; and lie v > - 1. The axis of the cone is perpen- 

dicular to the incident wave front, which touches the vep 

tex of the cone at the instant t = 0. With no loss of gen- 

erality we may set co = 1 and seek a solution in the form 

a=W+U u. Then the equation of the perturbed motion of 

H the medium and the boundary and initial conditions assume 

Fig. 1 the form 

all, \ a.b 
sin 0 -;i~--, = r: j;:- 

alIt ah a,,, (1.1) 
---zzZ--- ao a0 at O=f&, ,(, -_ 7$- X. 0 at t-=0 

(In the case when the derivative of ao does not exist in the ordinary sense, it is to be 

understood as a generalized derivative.) It is assumed that the function w(r, 0, I) satisfies 

the conditions under which a Laplace tranform in I is applicable, and that its tranform ad- 

mits a Kontorovich-Lebedev tranform in r [31. 

2. To the system (1.1) we first apply a Laplace transform in I, and then a Kontorovich- 

Lebedev tranform in r. Then the equation and boundary condition become 

Re p > a, > 0. Re 11 = 0. Q) (r. 8, p) r- II’ (r, 0. f) 
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Here r(x) is the Gamma function; P,a(a) are the associated Legendre functions of the 

first kind for the interval (- 1, 1) [4]; and K (x) is the MacDonald function. 

The solution of (2.1) which has no singu P* artty in the region 04 81; n and satisfies boun- 

dary condition (2.2) may be written in the following form: 

(2.3) 

Applying an inverse Kontorovich-Lebedev transform in p, we obtain 

Here fP(r) is the modified Bessel function of the first kind. 

The integral on the right-hand side of (2.4) converges and represents an analytic fuoc- 

tion in the region 1 arg p ( < % n - (28,, - 8). But the function a, as Laplace transform of 

the desired solution, should be analytic in the region Re p > oc. We use an analytic contin- 
uation of the right-hand side of (2.4) to define @ as au analytic function in the entire region 

Re p > a0 for any fl in the interval 8,< 0 < n. 

Since 

the integrand in (2.4) decays rapidly in the right half-plane and the contour of integration 
may he deformed to the contour L (Fig. 2). This is because the integrand in (2.4) is analy- 

_- 
a i 

tic in the half-plane Re p > 0 everywhere 
outside the real axis. As is evident from 

Fig. 2, the contour I, proceeds to infin- 
I 

Fig. 2 
ity along the real axis, circumventing 

each simple pole of the integrand. It is 
now easy to see that the integral in (2.4) (but now taken along 2,) converges and represents 

au analytic function in the half-plane Re p > 0; thus by the uniqueness theorem it represent: 
the function @ in the region Rep > ao. 

If we now apply an inverse Laplace transformation to (2.4) and interchauge the order of 

integration (which interchange may be justified by a detailed argument), we obtain 

1’ (1 _t- v) 

uJ=-- ;!y’;?; L 
s 

p:_,;, (cos 00) P,_y*(- cos 0) w 
ai i-n 

cos xp,!,, (- J.xH 63) 
--- dp 

s 

1, (VI 
--z ePLdp (a > 0) (3.:1 

a--ix> P” 

The integral with respect to p in (2.5) is calculated in Section 4, 

3. If one uses Formula (4.2) (see Section 4f, then expression (2.5) for ulfr, 8, t) mey 

written in the following form: 

r(f-!-vf 
to-- 2ri 

(r?_ p?)%(W) 
f 

I$_,, 
-2 

@OS 00) P*,,, (-- cos 0) p;r;i:: (- f I rf tr3 
--~----- (_ r < t < ‘, 

L 
cos ‘?}lP,?,* (- cos 00) 

w=r(ll-v) . ~ p ([? _ r?)“:(ttv) s COS [(p -V).'jPk,,, (COS &)I’,. t.lt (--CM 0)(2,1Ti(f / f)[L+ 
_-.I-- -- 

.1r1 
- 

L 
co3 rl}q& (- cos 00) 

v > 4 (3.1) 
Ifore QPQ(x) are the associated Legendre functions of the second kind. 

On the basis of the asymptotic properties of these associated Legendre functions as 
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Igl -b (Lo* it 1s 044y to 444 that for 20, - 8 < arc coo (c/r), the integrand in (3.1) for - t < t < 

<r decay. exponanthlly along say ray in the cc-plenc oat4lde the real axla; and thsrefore t 
Jo wwu L r4y k deformed into the hu4gl4y uim. ‘I%4n, 4ince P,o,(x) - P_:+(z), 
th4 r44nltlng lnregraf vanl4he4. Thn4 w4 4hall havs ‘everywhere w = 0 for t < 0, and also 

for0<r<r, if 2eo - 8 < arc co4 (t/r); one obtain4 the physical flow picture in Fig. 1: 

ont4lde ths bounded region BCKDN there is no disturbance. 

If one ~444 the theorem on residues and reduce4 the integral in (3.1) to a series corres- 
ponding to the roots of the exprerrslon coa a~ P c(‘-% (- cos 8,), then the series according 
to roots of the fuuction COB RJJ yields an incident wave with opposite sign (this is easily 

obtained by applying the inverse Laplace transform to the formula of Sonin (5) on Page 75 
of [S] and expressing the Gegenbaaer polytiomial by means of the associated Legendre func- 
tlon4 of the flrat kind according to Formula (4) on page 177 of (41). In this way the solution 

u may be written ln the following form: 

(t < r) 
r (f + VI 

u=bcosr(e&)(r f _ p)‘I’(‘+~) po-I-’ (_ t /r) + 

+ -g. r (1 + v) (rr - t+(‘+‘) 2 
(2p + 1) P: (cos 00) P, (- co9 e) p;‘--’ (- t / r) 
-- 

P==Pn 
sin npdP,,l (- cos 00) / dp 

y_ SE z; ;;+;’ (12 _ rY)‘k’+Y) cX~YQO--l-v(f /r)+ r ‘lr+ V)c-f(l+v)(tZ _ ,%)%(l+~) 2 x 

P=Pn 

X 
+ sin [(p - v) n] Pp* @OS 80) P, (- cos 0) x (2p + 1) Qpml-” (t / r) 

sin np dP,,t (- cos 00) / dp 
(t > r) (3.2) 

Her4 ~4 (n = 0, 1, 2, . ..I ar4 poaltlve roots of the function P, 1 (- cos 6 ) (in which 1 < 

<h <pt < . ..). It should be noted that the aer.ies obtained in (3.2) for t < r and - 1 < Re 

v < 0 ia conditionally convergent. 

For the tmrface 8 = f3,,, Formula (3.2) yields 

r(l+ v) 
==bcosr(e0/2)(r*- 

tr)W+v) po-1-v (_ t, r) _ 

_ r (1 + VI 
r sin 80 

(rr - t ) ( ) ‘/* 1+v) c t2kt + I) pk -I+(- t/r) 

‘“pn 
dP,l (- cos f&) / dp 

II_ sfnvwi+v) cziy 
- nr cw~ Q+, / 2) (t’ - r ) 

f ‘I*(l+v) Qo-'-' (t / r) + 

+ zw +v) 
Ti;sine 

_Iv (f2_ r%)'/t(l+~) 2 
W+ i)sin I@-- v) nl Q,,,-'-'(t/r) 

P'Pn dPp’ (- cos &,) / dp - 

A4 r e 0 we obtain from (3.2) 

t” 
rc (09 08 t) = ‘OS2 ((Jo/ 2) 9 

&A 
- -O(rP*-*) ar 

0 < 4 

(3.3) 

(t > rJ 

The value of Y (0, 8, t) thna obtained agree4 with the re4alta of (6) (where the value at 

tb4 vertex of the cone is found without solving ths entire problem). 
It 14 easy to verify that the solution (3.2) obtained 14 ouch that Lapiace and Kontorovich- 

Lebedev transforuia may be applied soccessively to it, aa was assumed initially, and that 

it 14 a generalized 4olation of the wave equation. From estimate (3.4) it follows that the ob 

talned solation (3.2) is unique [2]. 

Suppo4e the incident wave has the ahape of a step function (V = 0). The corresponding 
formah for this case ar4 obtained from (3.1) to (3.4), when v + 0. Studying the solution ob- 

talncd, it may be ehown that the fanctlon u nndergoes 4 discontinuity only along the lines 

BC and DN and that the magnitude of ths jump i4 equal to 
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( sin (280 - 8) “’ 

sin 0 1 
(8oB8d280) 

On the circle r = t the normal derivative au/Jr is discontinnoua. This diecontinuity ia 
such that as the arcs AC and DE are approached from either the left or the right, the fnnc- 

tion au/Jr becomes logarithmically singular, whereas this fnnction has a finite limit when 

the arc DKC is approached. 

If 8, + R/Z, then it is easy to show that the solution obtained for V= 0 tends to the solu- 

tion for the case of a blunt cone [l]. If the angle et, is small, then a result is obtained which 

may be found by solving the problem by means of delayed potentials. 
Formula (3.3) for the pressure on the cone at V- 0 haa the following form: 

(z < 1) (3.5) 
fS= w + 1) p;’ (-- 2, 

84 (r, &I, 1) = 2 cog (& / 2) 
j/z 

sin 80 

y-g 
d 

‘“r, 
dP,’ (-- cm 00) / dp 

i 
u (r, eo, 1) + COST (e. / 2) as r-+0 

1 
u (r,&, r) -+ ___-- 

2 - ---- (2~ + 1) sin fikr 
cc+ (& / 2 ) II sin flo x ~=p P (rt 4 1) dP,t (- cos 80) / dp 

n 

aar--rf 

u (r, h, t) ---f 2 as r ---, t / cos 8, 
Finally, Fig. 3 shows the results of caluclating the function u (r, 8,, t) according to 

Formula (3.5). for the angles 8 

for 8, = 15O were taken from [7 and for 8, = 45O and 75’ were calculated by 9 

= 15, 45, and 75’. The roots of the function P 1 ( - COST,,) 

P acDonald’s 

yormula [8]. 
We note that in the case of incidence of an ar- 

bitrary plane wave, the solution is generalized with 
the help of Duhamel’s integral. 

4. It is required to find the inverse Laplace 
transform of the function Iti(pr)/pY, i.e., to calcu- 

late the integral 

Fig. 3 

1 o+b I, (PI 
2rti \ 

0-h P’ 
ept dp (4.1) 

for an arbitrary complex ~1 and o > 0, r > 0, Imt I 0, 

Re v > - $$. The desired integral (4.1) is easily reduced to a sum of two integrals 
co 

1 
7 sin [G (v- p)] l* ‘9 J,(w) dz + $COS[% (V -- IL)] Yo CT J, (37) ciz 

0 0 

if one imposes on cc the additional limitation - 1 < Re (cc - v). But each of these integrals, 

according to Formula 6.699 in [9], may be expressed in terms of a hypergeometric function, 
and therefore the integral (4.1) is a sum of hypergeometric fnnctious. It turns out that this 

sum may be expressed by means of associated Legendre functions by Formulas 8.771(Z) and 

8.775(l) in 191, if one takes into account the error in the index of the hypergeometric func- 

tion in the second term of the summation in Formula 8.775(l) for P,,p(z), which should read 

F (V* (v + p + 2). ‘I* (p - v + 1); a/z; If) 

As a result we obtain Formulas 

(-r<t<r) 
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(Wa notu th8t for t < - r the fatqral (4.1) vanishso.) (4.:‘) 

By analytic continuation one may ahow that (4.2) holds in the entire complex g-plane 

provided that Re v > - 34. 
Inparticnisrcase~-v=n(n=O, 1,2,..., ) Formula (4.2) coincides with knows formu- 

Isa whia may be obtainad from 29.10 sad 29.71 in [lo] with the aid of the shift rule (if one 

conaiders the loat factor H in the rigkt column of Formula 29.71). 

The author thanks A,Ya. Sagomonisu and S.S. Grigorian for reviewing the paper, and 

V.A. Eroahin for help with it. 
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